LIPS® X100 CYLINDER - LINEAR POSITION SENSOR INTRINSICALLY SAFE FOR HAZARDOUS GAS/VAPOUR ATMOSPHERES - Intrinsically safe for Gas to: Ex II 1G - Non-contacting inductive technology to eliminate wear - Travel set to customer's requirement - High durability and reliability - High accuracy and stability - Sealing to IP65/IP67 as required As a leading designer and manufacturer of linear, rotary, tilt and intrinsically safe position sensors, Positek® has the expertise to supply a sensor to suit a wide variety of applications. Our intrinsically safe X100 LIPS® ductive Position Sensor) inc (Linear Inductive incorporates electronics system EX07 which is ATEX / IECEx approved for use in potentially explosive gas/vapour atmospheres. The X100 is designed for demanding hydraulic or pneumatic cylinder position feedback applications where service life, environmental resistance and cost are important and is ideal for OEMs seeking good sensor performance for arduous applications in hazardous areas. Overall performance, repeatability and stability are outstanding over a wide temperature range. The unit is highly compact and space-efficient, being responsive along almost its entire length. Like all Positek® sensors, the X100 provides a linear output proportional to travel. Each unit is supplied with the output calibrated to the travel required by the customer, any stroke from 0-5mm to 0-800mm and with full EMC protection built in. The sensor is very rugged, being made of stainless steel with an inert fluoropolymer-sheathed probe with a stainless steel target tube. The sensor is easy to install in cylinders and has a range of mechanical options. Environmental sealing is to IP65 or IP67 depending on selected cable or connector options. #### **SPECIFICATION** **Dimensions** Body diameter 35 mm Body Length (to seal face) 43 mm Probe Length (from seal face) calibrated travel + 58 mm Probe Length (from Seal 1905, Seal 1905) Target Tube Length calibrated travel + 30 mm. For full mechanical details see drawing X100-11 Sower Supply +5V dc nom. \pm 0.5V, 10mA typ 20mA max 0.5-4.5V dc ratiometric, Load: $5k\Omega$ min. Seal 1906 Seal 1907 Seal 1908 Seal 1909 **Power Supply** Output Signal Independent Linearity *Sensors with calibrated travel from 10 mm up to 400 mm. < ± 0.01%/°C Gain & **Temperature Coefficients** < ± 0.01%FS/°C Offset > 10 kHz (-3dB) Frequency response Resolution Infinite < 0.02% FSO Intrinsic Safety Fx II 1G Ex ia IIC T4 Ga (Ta= -40°C to 80°C) Approval only applies to the specified ambient temperature range and atmospheric conditions in the range 0.80 to 1.10 Bar, oxygen \leq 21% Sensor Input Parameters (connector option/s) Ci: 1.16 μ F, Li: 50 μ H (cable option/s) Ci: 1.36 μ F, Li: 860 μ H with 1km max. cable Equironmental Temperature Limits Environmental Temperature Limits -40°C to +80°C -40°C to +125°C Operating Storage IP65/IP67 depending on connector / cable option Sealing Hydraulic Pressure **EMC Performance** EN 61000-6-2, EN 61000-6-3 IEC 68-2-6: 10 g IEC 68-2-29: 40 g 350,000 hrs 40°C Gf Vibration Shock MTBF **Drawing List** X100-11 P100-12 Sensor Outline Typical Target Installation details P100-15 Mounting Thread details TG24-11 Optional Target Tube Flange details Drawings, in AutoCAD® dwg or dxf format, available on request. Do you need a position sensor made to order to suit a particular installation requirement or specification? We'll be happy to modify any of our designs to suit your needs please contact us with your requirements. ## LIPS® X100 CYLINDER - LINEAR POSITION SENSOR INTRINSICALLY SAFE FOR HAZARDOUS GAS/VAPOUR ATMOSPHERES Intrinsically safe equipment is defined as "equipment which is incapable of releasing sufficient electrical or thermal energy under normal or abnormal conditions to cause ignition of a specific hazardous atmosphere mixture in its most easily ignited concentration." ATEX / IECEx approved to; Ex II 1G Ex ia IIC T4 Ga (Ta = -40° C to $+80^{\circ}$ C) Designates the sensor as belonging to; Group II: suitable for all areas except mining, Category 1 G: can be used in areas with continuous, long or frequent periods of exposure to hazardous gas (Zone Ŏ). Protection class ia, denotes intrinsically safe for all zones Apparatus group IIC: suitable for IIA to IIC explosive gas. Temperature class T4: maximum surface temperature under fault conditions 135°C. Ambient temperature range extended to -40°C to +80°C. It is imperative $\mathsf{Positek}^{\scriptscriptstyle{(\!0\!)}}$ intrinsically safe sensors be used in conjunction with a galvanic barrier to meet the requirements of the product certification. The Positek X005 Galvanic Isolation Amplifier is purpose made for Positek IS sensors making it the perfect choice. Refer to the X005 datasheet for product specification and output configuration entires. product specification and output configuration options. Safety Parameters:- Ui: 11.4V, Ii: 0.20A, Pi: 0.51W Ci = 1.36µF* Li = 860µH* (cable option/s) Ci = 1.16µF Li = 50µH (connector option/s) Sensors can be installed with a maximum of 1000m of cable. Cable characteristics must not exceed:Capacitance: ≤ 200 pF/m for max. total of: Inductance: ≤ 810 nH/m for max. total of: 200 nF 810 uH For cable lengths exceeding 10 metres a five wire connection is recommended to eliminate errors introduced by cable resistance and associated temperature coefficients. ATEX / IECEx approved sensors suitable for dust (E series) and mining (M series) applications, are also available from Positek #### TABLE OF OPTIONS CALIBRATED TRAVEL: Factory set to any length from 0-5mm to 0- 800mm (e.g. 254mm) #### **ELECTRICAL INTERFACE OPTIONS** Sensors supplied with access to output 'zero' and 'span' calibration adjustments as standard. No access option available The Positek® X005 Galvanic Isolation Amplifier is available with the following output options; Standard: 0.5 - 9.5V or 4 - 20mA. Reverse: 9.5 - 0.5V or 20 - 4mA. #### CONNECTOR/CABLE OPTIONS IP65 Connector - Hirschmann GD series IP65 Cable[†] with M12 gland or short gland IP67 [†]Three core (black jacket) or five core (blue jacket) cable options available. Cable length >50 cm - please specify length in cm up to 15000 cm max. We recommend all customers refer to the 3 or 5-Wire Mode Connection #### MOUNTING THREAD OPTIONS M18, M20, 34 UNF 30 mm hex A/F, Ø30 mm seal face. Supplied with O-ring seal. #### FLANGE OPTIONS Penny & Giles HLP100, Temposonics (M4 fixing) and Parker Hannifin cylinders versions available. Retracted Linear Displacement Extended sensori & trasduttori ^{*}Figures for 1km cable where: Ci = 200pF/m & Li = 810nH/m # Three or Five-Wire Mode Connection FOR INTRINSICALLY SAFE SENSORS IN HAZARDOUS ATMOSPHERES The aim of this document is to help readers who do not understand what is meant by three or five wire modes of connection between the galvanic isolation amplifier and sensor, and the factors behind them. It is by no means an in-depth technical analysis of the subject. Whether opting for a pre-wired Positek® Intrinsically Safe sensor or one with a connector, choosing the right mode of connection and cable to suit the application requires careful consideration. Interconnecting cables are not perfect conductors and offer resistance to current flow, the magnitude of resistance[†] depends on conductors resistivity, which changes with temperature, cross sectional area[‡] and length. If the voltage were to be measured at both ends of a length of wire it would be found they are different, this is known as volts drop. Volts drop changes with current flow and can be calculated using Ohm's law, it should be noted that volts drop occurs in both positive and negative conductors. The effects of volts drop can be reduced by increasing the conductors cross sectional area, this does not however eliminate the effects due to temperature variation. There are instances where large cross-section cables are not practical; for example most standard industrial connectors of the type used for sensors have a maximum conductor capacity of 0.75mm², copper prices and ease of installation are other considerations. This is important because the effects of volts drop can significantly alter the perceived accuracy of the sensor which is ratiometric i.e. the output signal is directly affected by the voltage across the sensor. Changes in temperature will also be seen as gain variation in the sensor output. Three wire mode connections are common and are suitable in most cases with short or moderate cable runs. Applications that do not require a high degree of accuracy but have cable runs, say in excess of 10m, volts drop can reduced by introducing a terminal box close to the sensor and using a larger cross-section cable for a majority of the cable run. Sensors supplied with three core cable are calibrated with the cable fitted which largely eliminates errors due to conductor resistance at room temperature however, as mentioned above, small gain errors due to temperature fluctuations should be expected. Five wire mode connections have significant benefits as losses in the positive and negative conductors are compensated for by the galvanic isolation amplifier which can 'sense' the voltage across the sensor and dynamically adjust the output voltage so that the voltage across the sensor is correct. The effects of cable resistance and associated temperature coefficients are eliminated allowing for smaller conductors than a three wire connection for the same cable run. The amplifier can compensate for up to 15Ω per conductor with a current flow of 15mA, which is more than adequate for 150m of 0.25mm^2 cable, longer lengths will require larger conductors. For this reason Positek $^{\$}$ recommends five wire connections for cable lengths exceeding 10 metres in 0.25 mm 2 cable to preserve the full accuracy of the sensor. See illustrations below for examples of connecting a sensor to the galvanic isolation amplifier. The table above shows recommended conductor sizes with respect to cable length for both three and five wire connections, based on copper conductors. Three wire connections will introduce a gain reduction of 5% and a $\pm 1\%$ temperature dependence of gain over the range -40°C to +80°C for the cable temperature. (i.e. about -150 ppm/°C for the maximum lengths shown and less pro rata for shorter lengths.) It should be noted that the maximum cable length, as specified in the sensor certification, takes precedence and must not be exceeded. Positek® sensors are supplied with three core 0.25 mm² cable as standard, however five core 0.25 mm² cable can be supplied on request. The galvanic isolation amplifier is available as; G005-*** for 'G' and 'H' prefix sensors X005-*** for 'E', 'M' and 'X' prefix sensors sensori & trasduttori $^{^{\}dagger}$ R = ρ L/A ρ is the resistivity of the conductor (Ω m) L is the length of conductor (m) A is the conductor cross-sectional area (m^2). [‡]It is presumed that direct current flow is uniform across the cross-section of the wire, the galvanic isolation amplifier and sensor are a dc system. ## **Intrinsically Safe - Gas/Vapour Atmospheres**LIPS® SERIES X100 Cylinder – Linear Position Sensor | a Displacement (mm) | | Value | |--|---|-------| | Displacement in mm | e.g. 0 - 254 mm | 254 | | b Output | | | | b Output Supply V dc | | | | V _s (tolerance) | Output | Code | | +5V (4.5 - 5.5V) | 0.5 - 4.5V (ratiometric with supply) | Α | | c Calibration Adjustments | | Code | | Accessible - default | | blank | | Sealed | | Υ | | d Connections Cable or Connector | | Code | | Connector | IP65 DIN 43650 'C' | J | | Cable Gland | IP67 M12 - 3-core cable | Lxx | | Cable Gland | IP67 M12 - 5-core cable | LQxx | | Cable Gland | IP67 Short - 3-core cable | Mxx | | Cable Gland | IP67 Short - 5-core cable | MQxx | | 'Supplied with 50 cm as standard, specify required cable length specified in cm. e.g. L2000 specifies cable gland with 20 metres of cable. Nb: restricted cable pull strength. | | | | e Mounting Thread | | Code | | M20 x 1.5 | Hex. 30 mm A/F, Ø 30 mm seal | N | | 3/4 16 UNF | face. Supplied with O-ring seal. | Р | | M18 x 1.5 | Supplied with O-fing Seal. | T | | See P100-15 Drawing for Mating Thread Details. | | | | f Target Tube | | Code | | Stainless Steel 316 | OD: 9.45 mm | R | | See P100-12 Drawing for Typical Target Installation details. | | | | g Target Tube Mount | ing Flange | Code | | None | | U | | Penny & Giles HLP100 | Please specify flange position in mm. | Vxx | | Temposonics (M4 fixing) | eg. W17.5 specifies a Tempo style | Wxx | | Parker Hannifin | flange fitted 17.5 mm from the front face | Xxx | | See TG24-11 Drawing for Target | Details. | | | h Z-code | | Code | | Calibration to suit X005 - Default | | Z000 | | Connector IP67 M12 IEC 60947-5-2 must have options Y' & 'J' | | Z600 | | Connector IP67 M12 IEC 60947-5-2 must have option 'J' | | Z601 | | ≤± 0.1% @20°C Independent Linearity displacement between 10mm & 400mm only! | | Z650 | | Connector with cable option 'J' or 'JQ' with length required in cm i.e. J100 specifies connector with 100cm of cable. | | Z999 | ### Note! All Intrinsically Safe (IS) sensors must have a Z-code suffix. IS sensors must be used in conjunction with a Galvanic Isolation Amplifier - See X005 for Output options.