

CSG110

Strain Gauge Universal Amplifier

Sensor Solutions Source

Load · Torque · Pressure · Multi-Axis · Calibration · Instruments · Software

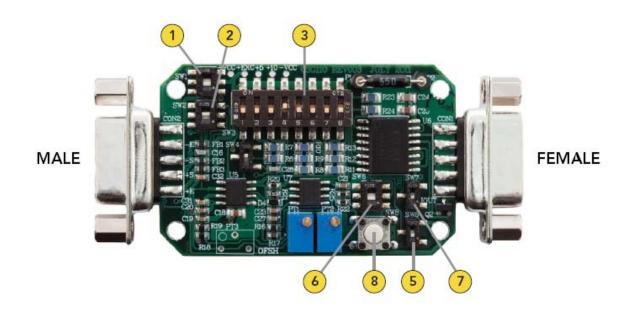
www.futek.com

Assistenza

Per maggiori informazioni e assistenza contattare: www.dspmindustria.it

JM-A2/D.12-13-0.0

FUTEK si riserva il diritto di modificare il progetto e le specifiche senza preavviso.

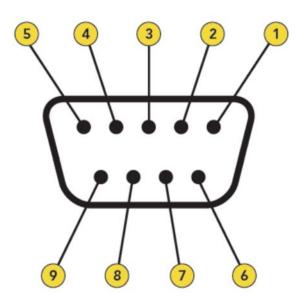

Si prega di visitare http://www.futek.com per una visione completa dei prodotti.

Sommario

Service	2	Current Setup Steps	10
Logic Board Configuration	4	DIP Switch Description	12
CSG110 Sensor Side Connections	5	Shunt Resistor	15
Sensor DB9 Assembly .	6	Specifications	16
CSG110 Power Side Connections	7	Related Accessories	20
Included Power Side DB9 Cable	8	Troubleshooting Tips	21
Voltage Setup Steps	9		

Scheda di Configurazione

SW	1	Eccitazione
SW	2	Polarità
SW	3	Guadagno
SW	5	Impostazione
SW	6	Ingresso in corrente
SW	7	Impostazione
SW	8	Shunt

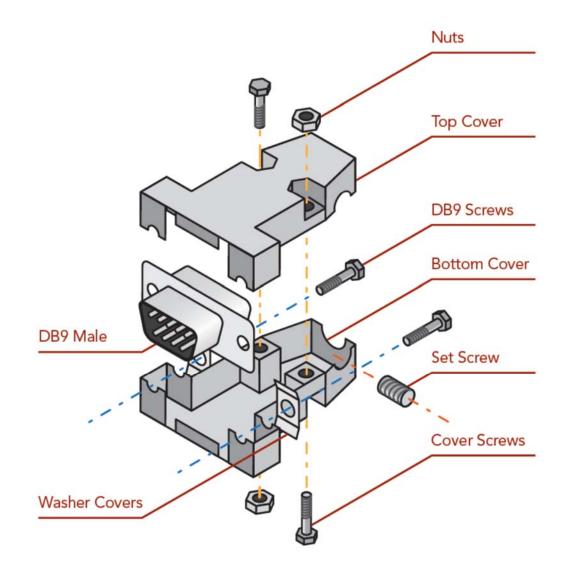


CSG110 Connessioni al Sensore

NOTA IMPORTANTE: Non collegare l'apparecchio all'alimentazione quando il sensore non è connesso.

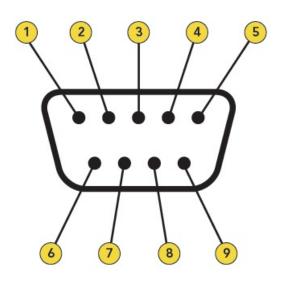
EEMALE DO CENICOD CIDE

FEIVIA	TE DRA SENZOK ZIDE
PIN#	WIRING CODE
1	+ EXCITATION1
2	+ SIGNAL
3	– SIGNAL
4	- EXCITATION 1
5	GROUND
6	GROUND
7	GROUND
8	GROUND
9	GROUND


¹ Per il sensore a 6 fili collegare + SENSE a + ALIMENTAZIONE -SENSE a terra. Nota: La schermatura può essere collegata a qualsiasi terra disponibile.

Montaggio Sensore DB9

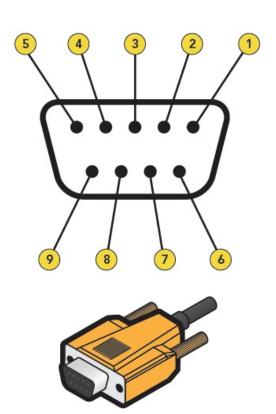
Connettore maschio DB9 (INCLUSO)


Informazioni sul sensore, tra cui la scheda tecnica con cablaggio, possono essere trovate nel nostro sito (www.futek.com) utilizzando la funzione di ricerca sensore e numero di serie e modello, o il numero di disegno. Inoltre, i cablaggi e le connessioni al CSG110 sono disponibile a http://www.futek.com/wirecode.aspx

CSG110 Connessioni al Sensore

NOTA IMPORTANTE: Non collegare l'alimentazione quando il sensore non è connesso.

MALE	DB9 POWER SIDE	
PIN#	WIRING CODE	CABLE COLOR CODE
9	POWER SUPPLY	RED
8	SIGNAL OUT (VOLTAGE)	GREEN
7	GROUND	ORANGE
6	GROUND	BLACK
5	GROUND	N/A
4	GROUND	N/A
3	GROUND	N/A
2	GROUND	BLUE
1	SIGNAL OUT (CURRENT) ²	WHITE



² Disponibile solo con opzione di uscita in corrente.

DB9 Alimentazione inclusa nel lato del cavo

NOTA IMPORTANTE: Non collegare l'alimentazione quando il sensore non è connesso.

FEMA	LE DB9 POWER SIDE (SI	UPPLIED)
PIN#	WIRING CODE	CABLE COLOR CODE
1	SIGNAL OUT (CURRENT)	WHITE
2	RETURN (CURRENT)	BLUE
6	GROUND (POWER)	BLACK
7	RETURN (VOLTAGE)	ORANGE
8	SIGNAL OUT (VOLTAGE)	GREEN
9	SUPPLY POWER	RED
_	SHIELD	N/A

Installazione Tensione

NOTA IMPORTANTE: Non collegare l'alimentazione quando il sensore non è connesso.

- Impostare SW 1 stabilisce, i 10 VDC di eccitazione o i 5 VDC di eccitazione. Per impostazione predefinita, il CSG110 è impostato a 10 VDC a FUTEK.
- Impostare l'interruttore di guadagno DIP (SW3) per il livello di guadagno adeguato. Per impostazione predefinita, il guadagno è impostato con switch a 4 per un sensore di 2 mV / V. (Utilizzare la nostra impostazione del foglio Excel sulla pagina del sito di supporto FUTEK CSG110 per trovare il guadagno DIP per una impostazione corretta del guadagno per l'uscita del sensore mV / V.
- 3. Con il sensore e il CSG110 collegato i 14-26 VDC al condizionatore.

- 4. Senza carico al sensore regolare il potenziometro Zero fino a quando la tensione di uscita è il più vicino a 0 VDC.
- 5. Con un carico noto posto sul sensore regolare il potenziometro Span per il livello di uscita desiderato. Ad esempio, 10 VDC per un valore a pieno carico.
- 6. Rimuovere il carico e riconfermare l'uscita a carico nullo, e quindi riapplicare il carico conosciuto e riconfermare l'uscita span.

Nota: Regolazione Span influenza ogni taratura del sistema. Regolazione zero non influenzerà la calibrazione.

Strumento di calibrazione online di FUTEK consente il RECUPERO della sintesi dei dati di calibrazione del sensore:

http://www.futek.com/calibrationData.aspx

Configurazione attuale

NOTA IMPORTANTE: Non collegare l'alimentazione quando il sensore non è connesso.

- 1. La tensione di uscita del CSG110 avviene attraverso una fase di conversione della corrente. Questo significa che l'eccitazione e Gain devono essere impostati come setup prima.
- 2. L'uscita in tensione è la conversione in corrente. Utilizzando gli interruttori DIP 5, 6, e 7, impostare l'uscita in corrente desiderata.

SW5	SW6	SW7	Input Range	Output Range
•	•	•	0–10 V	4–20 mA
•	•	•	0–10 V	5–25 mA
•	•	•	0–10 V	0–16 mA
•	•	•	0–10 V	0–20 mA
•	•	•	0–5 V	4–20 mA
•	•	•	0–5 V	5–25 mA
A	A	•	0–5 V	0–16 mA
A	A	•	0–5 V	0–20 mA

Configurazione attuale

- 3. Con il sensore e l'amplificatore CSG110 completamente collegati l'alimentazione è 14-26 VDC al CSG110.
- 4. Senza carico sul sensore regolare il potenziometro Zero finché la corrente di uscita sia più vicino allo Zero.
- 5. Con un carico noto posto sul sensore regolare il potenziometro Span in modo di appropriare il livello a quanto desiderato. Per esempio, 20 mA per un'uscita al massimo carico.
- 6. Rimuovere il carico e riconfermare l'uscita a carico nullo, e quindi riapplicare il carico conosciuto e riconfermare l'uscita span.

Nota: Regolazione Span influenzerà ogni taratura del sistema. Regolazione zero non influenzerà la calibrazione.

DIP Descrizione Switch

DIP Switch 1: Eccitazione

- L'eccitazione è la tensione fornita dalla CSG110 al sensore e può essere di 5 VDC o 10 VDC.
- Si consiglia di utilizzare l'eccitazione più elevata, in quanto si riduce il guadagno che consentirà di ridurre il rumore.

DIP Switch 2: Polarità

- Il commutatore di polarità può essere utilizzato per modificare la polarità del segnale in ingresso al CSG110.
- Ad esempio, se la tensione è negativa può essere reso positivo attraverso DIP Switch 2.

EXCITATION SW1		POLARITY SW2	POLARITY SW2		
Position	Excitation	Position	Polarity		
A	5 VDC		REVERSE		
.▼	10 VDC	▼	STRAIGHT		

DIP Descrizione Switch

DIP Switch 3: Sensibilità (Guadagno)

L'interruttore DIP di sensibilità controlla il guadagno necessario per ottenere il livello di uscita desiderato, esempio, ± 10 VDC.

sees we require		China Barriston II	200 000 00	100 0000	2017 200715084
Switch	Position	Sensitivity	Switch	Position	Sensitivity
1	A	0.5 mV/V	5	A	2.5 mV/V
	▼	N/A		▼	N/A
2	A	1 mV/V	6	A	3 mV/V
	▼	N/A		Y	N/A
3	A	1.5 mV/V	7	A	4 mV/V
	▼	N/A		¥*	N/A
4	A	2 mV/V	8	A	10 mV∕V
	▼	N/A		▼	N/A

DIP Descrizione Switch

DIP Switch 5 6 7 : Impostazione Corrente

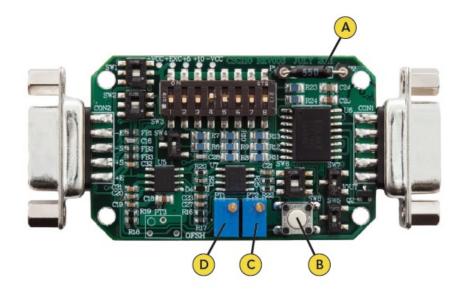
L'uscita in tensione del CSG110 viene fatta passare attraverso una

• conversione in corrente. Di conseguenza l'uscita in corrente si basa sul livello di tensione, dal CSG110.

CURRENT SETTING						
SW5	SW6	SW7	Input Range	Output Range		
•	•	•	0–10 V	4–20 mA		
•	•	A	0–10 V	5–25 mA		
A	•	Y	0–10 V	0–16 mA		
•	•	A	0–10 V	0–20 mA		
•	A	▼	0–5 V	4–20 mA		
•	A	A	0–5 V	5–25 mA		
_	A	•	0–5 V	0–16 mA		
A	A	A	0–5 V	0–20 mA		

Resistenza di Shunt

Lo Shunt è utilizzato per simulare un carico al sensore utilizzando un resistore interno definito 'RSH' nel circuito CSG110.


Il resistore è collegato al eccitazione e segnale del sensore quando viene premuto il pulsante di shunt.

La resistenza interna può essere rimossa e sostituita.

Per eseguire uno shunt, premere il pulsante SHUNT bianco senza carico sulla cella di carico.

Calibrazione utilizzando Shunt:

- 1. Lo shunt può essere utilizzato in calibrazione regolando il potenziometro Span tenendo premuto il pulsante di shunt.
- 2. Regolare la tensione di uscita dal CSG110 finché l'uscita è più vicina al valore appropriato dello shunt.

A Shunt Resistor

C Span

B Shunt

D Zero

Il valore dello Shunt online sul sito FUTEK può essere usato per calcolare un risultato stimato di una resistenza shunt, o per calcolare la resistenza necessaria per un determinato valore di uscita del sensore. http://www.futek.com/shuntcalc.aspx

VERSIONS		
ITEM #	BANDWIDTH	OUTPUT
FSH01449	1 kHz	±5 VDC, ±10 VDC, 0–20 mA, 4–20 mA, 0–16 mA , 5–25 mA
FSH03546 ³	1 kHz	±5 VDC, ±10 VDC
QSH006024	10 kHz	±5 VDC, ±10 VDC, 0–20 mA, 4–20 mA, 0–16 mA , 5–25 mA
QSH01498 ⁵	25 kHz	±5 VDC, ±10 VDC, 0–20 mA, 4–20 mA, 0–16 mA , 5–25 mA
FSH03676	1 kHz	0-2.5-5 VDC , 0-5-10 VDC, 0-10-20 mA, 4-12-20 mA

³ FSH03546: Alimentazione minima di 12,5 VDC

 $^{^{4}}$ Solo per sensibilità 1 mV / V o superiore

⁵ Solo per sensibilità di 1.5 mV / V o superiore

ENVIRONMENT				
PARAMETER	MIN	TYPICAL	MAX	UNIT
Operating Temperature ⁶	32		158	°F
	0		70	°C
Storage Temperature	-40		185	°F
	-40		85	°C

Umidità relativa: 95% a 100°F (39 ° C)

Valutazione del IP: IP31

 $^{^6}$ temperatura operativa estesa da -40 a 185 $^\circ$ F (da -40 a 85 $^\circ$ C), disponibile su richiesta.

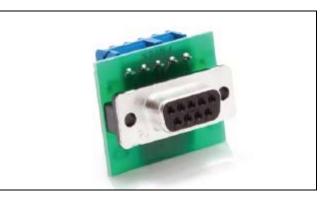
ELECTRICAL SPECIFICATIONS					
MIN	TYPICAL	MAX	UNIT		
14		26	VDC		
	30		mA		
	1500		Ohms		
	200		Ohms		
100			Ohms		
1000		25000	Hz		
120			dB		
	100	14 30 1500 200 100	14 26 30 1500 200 100 1000 25000		

⁷ alimentazione minima varia per i modelli OEM

⁸ Carico applicato (ingresso o uscita)

ELECTRICAL SPECIFICATIONS (CONTINUED)				
PARAMETER	MIN	TYPICAL	MAX	UNIT
Noise		15		mV p-p
Output Span Range	-10		10	% of Rated Output
Output Zero Range	-10		10	% of Rated Output
Gain Drift with Temperature	-25	X	25	PPM of FSR per degree Celsius
Gain Non-Linearity	-0.001	Χ	0.001	% of FSR
Zero Drift with Temperature	-25	X	25	PPM of FSR per degree Celsius

Accessori correlati


Presa gialla stampata (inclusa)

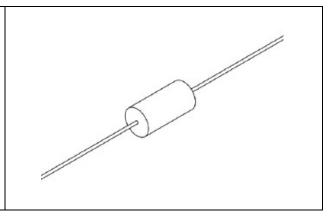
Item: FSH03219

DB9 maschio con custodia (inclusa)

Item: FSH01075

Terminale vite (femmina)

Item: FSH02237


Terminale vite (maschio)

Item: FSH02236

Kit di alimentazione

Item: FSH03088

Shunt resistor

modello: su richiesta

Soluzione dei problemi

Per evitare danni, assicurarsi che tutte le connessioni al CSG110 siano completate prima di accendere l'alimentazione al CSG110.

Il suggerimento prima di risolvere il problema al CSG110 è di scollegare sia il sensore che l'alimentazione. Utilizzando un voltmetro, invece dell'acquisitore o PLC aiuterà a restringere il guasto.

Se un altro CSG110, o il sensore, è disponibile, una sostituzione può aiutare la ricerca del problema.

Il CSG110 genera una tensione elevata o una corrente costante.

La tensione non cambia (o corrente) all'uscita del CSG110 potrebbe essere aperto il lato sensore. Controllare il cablaggio nel DB9 lato sensore. Inoltre, un controllo della resistenza sui collegamenti del sensore (± ± eccitazione e segnale) a conferma che il circuito non è aperto o in cortocircuito lato sensore. La scheda tecnica del sensore o il certificato di calibrazione elencherà i valori diresistenza del ponte estensimetrico.

- Collegare le connessioni ± segnale al sensore, il CSG110 (pin 2 e 3) con il sensore staccato dovrebbe portare a 0 VDC l'uscita elettrica del CSG110. Questo può essere utile per una conferma alla funzionalità della variazione del carico
- Verificare che il livello di guadagno è impostato in modo appropriato. Un alto guadagno porta in saturazione lo stadio amplificatore del CSG110.
- 4. Assicurarsi che il sensore non è stato sovraccaricato. Se possibile, rimuovere i cavi ± segnale dal sensore e confermare che il valore di zero con un voltmetro, mentre utilizzando l'alimentazione dalla CSG110 ai fili ± eccitazione assicurarsi che arriva tensione di alimentazione.

Soluzione dei problemi

Il CSG110 non ha uscita elettrica, non cambia la uscita.

- Confermare che l'alimentazione del CSG110 è compresa tra 14 e 26 VDC.
- 2. Confermare l'assenza di corto circuito lato sensore. Utilizzando un voltmetro, assicurarsi il valore di resistenza del sensore ± di eccitazione e di ± segnale per eventuali corti.
- 3. Quando si utilizza una corrente di uscita, la corrente scorre solo in senso positivo, che significa una uscita negativa dal sensore.

Per ulteriore supporto CSG110, si prega di visitare il sito:

http://www.futek.com/csg/support.aspx

Nota: Vedere il sito FUTEK per l'offset, la posizione dello zero per ricavare una uscita bidirezionale per la corrente.

10 Thomas, Irvine, CA 92618 USA Tel: (949) 465-0900 Fax: (949) 465-0905

www.futek.com

